Graded annihilators of modules over the Frobenius skew polynomial ring, and tight closure

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Codes as Modules over Skew Polynomial Rings

In previous works we considered codes defined as ideals of quotients of non commutative polynomial rings, so called Ore rings of automorphism type. In this paper we consider codes defined as modules over non commutative polynomial rings, removing therefore some of the constraints on the length of the codes defined as ideals. The notion of BCH codes can be extended to this new approach and the c...

متن کامل

Tight Closure of Finite Length Modules in Graded Rings

In this article, we look at how the equivalence of tight closure and plus closure (or Frobenius closure) in the homogeneous m-coprimary case implies the same closure equivalence in the non-homogeneous m-coprimary case in standard graded rings. Although our result does not depend upon dimension, the primary application is based on results known in dimension 2 due to the recent work of H. Brenner...

متن کامل

Annihilators of Artinian modules compatible with a Frobenius map

In this paper we consider Artinian modules over power series rings endowed with a Frobenius map. We describe a method for finding the set of all prime annihilators of submodules which are preserved by the given Frobenius map and on which the Frobenius map is not nilpotent. This extends the algorithm by Karl Schwede and the first author, which solved this problem for submodules of the injective ...

متن کامل

Tight Closure in Graded Rings

This paper facilitates the computation of tight closure by giving giving upper and lower bounds on the degrees of elements that need to be checked for inclusion in the tight closure of certain homogeneous ideals in a graded ring. Differential operators are introduced to the study of tight closure, and used to prove that the degree of any element in the tight closure of a homogeneous ideal (but ...

متن کامل

Generic Bounds for Frobenius Closure and Tight Closure

We use geometric and cohomological methods to show that given a degree bound for membership in ideals of a fixed degree type in the polynomial ring P = k[x1, . . . , xd], one obtains a good generic degree bound for membership in the tight closure of an ideal of that degree type in any standard-graded k-algebra R of dimension d. This indicates that the tight closure of an ideal behaves more unif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2007

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-07-04247-x